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The article explains the method of solving nonlinear problems of heat conduction with the aid of hybrid 
computer systems. It examines the possibility of using hybrid systems for realizing the method of optimum 
dynamic filtration. 

For solving nonlinear problems of the theory of fields, approximate analytical and numerical methods are at present 
widely used; these methods are, as a rule, realized on analog and digital computers. Each of these computer types has its 
advantages and shortcomings. It is only natural that endeavors are made to combine the rapid action of analog computers 
(parallel execution of computing operations) with the accuracy, flexibility, and high degree of automation of the computing 
process on digital computers. 

Analog models are divided into passive (analog models) and structural models consisting of active elements based on 
operational amplifiers. The former realize at once the modeled equation, the latter carry out individual mathematical 
operations. Structural models are used primarily for solving problems described by ordinary differential equations (problems 
of control, navigation, some problems of dynamics, etc.). As regards problems of the theory of fields, where, as a rule, 
equations in partial derivatives are examined (and with finite-difference approximation large bodies of the same type of 
algebraic equations), these are very efficiently solved with passive models, the processes being described by the same mathe- 
matical model as the process in the investigated object. Therefore, in devising hybrid systems for modeling physical fields, 
it is an advantage to combine a digital computer in particular with that kind of analog computer, when the analog network 
of resistors may be viewed as an exceedingly suitable and high-speed subprogram for solving systems of algebraic equations 
(the number of nodes of the network determines the order of the system which can be solved on it). The matter is not 
fundamentally changed if we view the network as basic processor, and the digital computer (or some other automatic digital 
device) as a device for specifying the initial data, receiving the results of the solution, or carrying out auxiliary operations in 
the organization of the iteration process. Experience in the operation of similar hybrid computing systems (HCS) shows 
that they are 1-2 orders of magnitude faster than the digital computers included in a given hybrid system. 

The mathematical model of the nonlinear problem of non-steady-state heat conduction comprises the equation 
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the initial Tt= o = f(x, y, z), and the boundary conditions: 
of the first kind (1) 
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of the fourth kind (IV) 
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When HCS are used for modeling system (1)-(2), the first thing that suggests itself as a matter of course is the automation 
of Liebmann's method [ 1 ] or of the method of successive intervals, which is widely used for solving nonlinear problems of 
the theory of fields with resistive networks. This is precisely how the analog-digital computer complex (ADCC) "Saturn" 
[2] is arranged, which is a hybrid computing system (HCS) consisting of the universal computer M-222 and a completely 
code-controlled network processor "Vega" for 1024 two-coordinate nodes (the "Saturn-2" has 2048 three-coordinate nodes). 
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Although the hybrid systems of type ADCC "Saturn" have great possibilities, they are unacceptable to most users because of 
their high price, which is due to the large number of code-controlled elements of the analog processor. 

The price of the system can be substantially reduced by keeping the number of these elements small; this requires 
that the mathematical model of the phenomenon under examination be correspondingly processed. For instance, Eq. (1) 
can be transformed into the equation 
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as was done, e.g., by Kozdoba [3]. 

In Eqs. (3) and (4) there is no nonlinearity in the left-hand sides, and they can be modeled on a code-controlled 
network with constant structure. The right-hand side of the equation is modeled by additional current which can be intro- 
duced into each node of the model, e.g., with the aid of one code-controlled element, a current lead-in. However, it is not 
easy to calculate the intensity of the led-in current; this is borne out by the form of the right-hand sides of Eqs. (3) and (4). 

It is better to change the initial mathematical model with the aid of special transformations, e.g., by using the widely 
used [4] Kirchhoff substitution: 
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This substitution makes it possible to linearize the left-hand side of Eq. (1), and it then assumes the form 
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and in the steady-state case in general it becomes linear, turning into a Laplace equation. With boundary conditions 
I and II, which remain linear, the equation can be solved in principle with an analog processor of the HCS without partici- 
pation of a digital computer, whose function in this case is confined to receiving information from the analog processor and 
issuing this information in digital form or using it for further calculations. With boundary conditions III, which after 
transformation (2) with the aid of (5) remain nonlinear: 
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the functions of the digital computer in the HCS are broadened because, in addition to the above operations, it also has to 
process the signals coming from the boundary nodes of the network according to the left-hand side of Eq. (7), and it has to 
specify the corresponding currents for these nodes. The solution is effected by iterations, like in Liebmann's method, but 
when the present method is used, only the parameters of a small part of nodes of the network (nodes at the boundary of 
the modeled domain) are subject to change, whereas all the other elements of the network maintain their structure un- 
changed and do not require any corrective action. 

The role of the digital computer is even greater in solving non-steady-state problems. In this case it processes signals 
coming not only from the boundary nodes, but also from internal nodes of the network, and it specifies the current to 
these nodes in proportion to the right-hand side of Eq. (6). In this case, the code-controlled elements have to be part of 
the entire structure of the analog processor but their number, in dependence on the procedure used, is only 40 to 20% of 
the number of elements in the HCS that are similar to the ADCC "Saturn." 

Various methods can be used to solve Eq. (6). Depending on the selected procedure, the structures of the analog 
processor, the share of the digital and analog parts of the HCS in solving the problem, the number of code-controlled 
elements, and in consequence of all this, the price of the HCS will differ. In [5], various approaches to the realization of 
the solution of Eq. (6) in a HCS, presented in finite-difference form, were examined; a classification of network processors 
was presented; the structures of various processors were compared; the possibility was demonstrated of using the principle 
of superposition for solving nonlinear problems of non-steady-state heat conduction. As a result of the analysis of various 
versions of analog structures, taking the possibility and price of their realization at the present time into account, it was 
demonstrated that the most acceptable structure of an analog processor of the HCS is a spatial network of code-uncontrolled 
resistors with two code-controlled elements in each mode and with twofold use of the principle of superposition. Such an 
analog processor, which is relatively cheap (half the price indicator of a fully code-controlled structure), is most efficient 
in regard to informational productivity and the volume of the internal memory of the digital computer, and it takes second 
place (after the fully code-controlled structure) as regards its speed. 
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Fig. 1. Block diagram of the analog- 
digital computer complex. 

The above analog structure was made the basis of the analog-digital computer complex "Neptun" [6], designed at 
the Institute of Problems of Engineering, Academy of Sciences of the Ukr. SSR, which at present is undergoing its debugging 
tests. The ADCC "Neptun" (Fig. l) consists of the M-222 digital computer, the network analog processor (AP), the infor- 
mation-exchange unit (IE), the node commutator (NC), and the analog-digital converter (ADC). The network AP contains 
the network of resistors with 512 nodes and the unit of digital-analog converters, whose part is played by the code- 
controlled conductances (CC) and voltage sources(CVS). These elements are instrumental in realizing the method of 
successive intervals [1] in the modification where from iteration to iteration, only the "time-dependent resistance" R t 
changes, realized with the aid of the CC, and the voltage supplied by the CVS and corresponding to the value of the func- 
tion | at the preceding step in time. More detailed information on the device and the operating principle of the ADCC 
"Neptun" can be found in [6-8]. 

We want to point out that for a number of problems the HCS need not contain a digital computer. A digital 
computer is necessary in solving a complex of thermophysical problems entailing a large number of algorithmic operations, 
and where the solutions of individual problems, often following one after the other and influencing each other, as occurred 
during the design of the ADCC "Neptun," have to be made consistent. When the calculations are simpler, it is advisable 
to use autonomous systems or HCSs (not connected with a digital computer) which, in addition to AP and a digital 
computer, contain one or several digital specialized processors (DSP), and also devices for feeding initial data and 
for the output of the results of the solution. For instance, for solving problems of heat conduction by the above-described 
method, the most efficient is a three-processor HCS consisting of an AP, a digital computer, and a DSP, where the DSP has 
the function of organizing an autonomous iteration computing process; this greatly increases the speed of the entire system. 

With the ADCC "Neptun," like with a three-processor HCS, inverse problems of heat conduction can be solved. 
For this, the method [9-11 ] may be used. However, it is more expedient to connect an additional DSP to the mentioned 
systems; from the mismatch signal between the specified potential of the node (the analog of the temperature known from 
the physical experiment) and the potential obtained at this point as a result of modeling, the additional DSP has to calculate 
the necessary correction of the boundary conditions and issue a command to the AP for their change. Like in the solution 
of direct problems of heat conduction, the organization of the iteration process at internal nodes remains the function of 
the digital computer or of the basic DSP. 

We will dwell in particular on the use of hybrid systems, especially the ADCC "Neptun," for realizing the solutions 
of inverse problems of heat conduction by the method of optimum dynamic filtration, which in recent times has been used 
among other probabilistic methods in solving the examined class of problems [ 12-14]. 

The method explained in [15], with all its positiv~ aspects (invariance to different problems of heat conduction, 
high accuracy of the obtained results, etc.), has nevertheless, like other attempts to use the optimum filter for solving 
problems of heat conduction, a substantial shortcoming consisting in the fact that the solution of problems with a large 
number of nodes requires a very large memory capacity and high speed of the computing means, which the present digital 
computers do not have. On the other hand, the identified parameters (e.g., the heat-transfer coefficients) are, as a rule, 
affected in the solution of the inverse problem by fully determinate, often bounded zones of the temperature field of the 
object, i.e., for solving the problem it suffices to ref'me the temperature only in those zones, whereas the information on 
the rest of the temperature field may remain more inaccurate. This information (even though inaccurate, nevertheless 
relatively reliable) can be obtained by modeling on analog devices (HCS based on AP), and the temperatures in zones 
directly affecting the identification of the boundary conditions will be refined by the digital processor. When the problem 
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is thus stated, the matrices and vectors contained in the falter are of much lower order, and this ~so obviates the stringent 
requirements that the memory and the speed of the digital computer have to fulfill; the use of the iteration modification 
of the filter [ 16] makes it possible substantially to increase the accuracy of the solution. 

NOTATION 

T, temperature; X, thermal conductivity; c, specific heat; p, density; t, time; x, y, z, Cartesian coordinates; q, heat 
flux; ~, heat-transfer coefficient; a, thermal diffusivity; R, electrical resistance. Subscripts: s, surface; c, medium. 
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